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SOME NEW RESULTS ON THE INITIAL TRANSIENT PROBLEM 

Peter W. Glynn 

Department of Operations Research 
Stanford University 

Stanford, CA 94305-4022, U.S.A. 

ABSTRACT 

This paper contains two new results pertaining to the 
initial transient problem for steady-state simulations. 
Our first result rigorously establishes the asymptotic 
superiority of a few long replications relative to a 
large number of shorter replications, assuming that 
no initial transient deletion is attempted. Our sec- 
ond result concerns an initial transient detection test 
proposed by Schruben; we develop asymptotics that 
are suggestive of the types of initial transients that 
the test is capable of detecting. As one might ex- 
pect, the ability to detect a non-stationarity in the 
simulation output depends both on the magnitude of 
the non-stationarity of the initial condition, and the 
degree of autocorrelation in the process. 
Keywords: initial transient, steady-state simula- 
tion, Markov chains. 

1    INTRODUCTION 

Let X = (X(t) : t > 0) be a real-valued stochastic 
process representing the output of a discrete-event 
simulation. We say that X possesses a steady-state 
if there exists a (deterministic) constant a such that 

X(t) = \ [ X(s)ds 
t Jo 

=*• a (1) 

as t —► co, where =*• denotes convergence in distri- 

bution, and = a definition. Assuming (1) holds, the 
parameter a is referred to as the steady-state mean of 
X\ the steady-state simulation problem is concerned 
with the use of simulation to numerically compute a. 

Of course, typically the distribution under which X 
is initiated is atypical of the steady-state of X, and 
consequently the initial portion of the simulation is 
not representative of the steady-state. As a result, 
the initial portion of the simulation contains output 
that is biased relative to the steady-state. The initial 
transient problem is concerned with the study of this 

bias, and the development of associated procedures 
that can be used to mitigate its impact. 

Note that the law of large numbers (1) suggests us- 
ing X(t) as an estimator for a. To assess the rate 
of convergence of X(t) to a, it is common practice 
to construct a confidence interval for a based on the 
estimator X(t). In great generality, it is known that 
the law of large numbers (1) is typically accompa- 
nied by a central limit theorem (CLT); see, for ex- 
ample, Glynn and Iglehart (1990) for a discussion of 
this phenomenon. The CLT asserts the existence of 
a (deterministic) constant a such that 

t^2(X(t) - a) => aN(0,1) (2) 

as t —► co, where N(0,1) denotes a normal r.v. 
with zero mean and unit variance; the constant a1 

is known as the time-average variance of X. In order 
to construct confidence intervals for a based on (2), 
it is necessary to either estimate a1 directly^ or to 
somehow develop a limit theorem involving X(t) in 
which a1 is "cancelled out". Direct estimation of a1 

is a special challenge in this estimation setting, since 
the estimator X(t) is effectively constructed from 
just one replication of X, and consequently sophisti- 
cated methods need to be applied in order to estimate 
a2. Such methods include the regenerative method, 
spectral analysis techniques, and auto-regressive ap- 
proaches; see Bratley, Fox, and Schräge (1987) for 
details. 

To avoid this variance estimation difficulty, one can 
instead replicate X m independent times, running 
each replication to time t/m so that the total time 
horizon simulated is identical to that needed for X(t). 
Letting Xi,X<i,... be the associated replications of 
X, this leads to the multiple replications estimator 

1   m 

am(i) = -VXi(i/m), 
m T^l t=i 

where Xi(t) = t~1 f£ Xi(s) ds. Given that m > 2, an 



obvious estimator for the variance of am(t) is then and 

1 m 
Vm{t) = m(rn-l) D**(*/™) ~ arn(t))\ 

Of course, one difficulty with the multiple replications 
approach just described is that the initial transient 
phase is itself replicated in each of the m replications, 
thereby magnifying the impact of the initial transient. 
This suggests that a few long replications ought to 
be superior to many shorter replications. In section 
2, this result is rigorously established by using the 
criterion of mean square error (MSE) as a basis for 
comparison. 

In section 3, we consider an initial bias detection 
test proposed by Schruben (1982). We use a class 
of autoregressive processes to study the sensitivity of 
the test to the initial condition of the simulation, and 
autocorrelation structure of the process. 

2 THE SUPERIORITY OF A FEW LONG 
RUNS 

In this section, we shall analyze the asymptotic MSE 
of am(t) as t -> oo. In Glynn (1987), the multiple 
replicates estimator am{t) was studied using meth- 
ods of weak convergence; however, most of the theory 
presented there assumes that m —► oo as i —»oo. In 
our current discussion, however, we are especially in- 
terested in the case of small to moderate values of m, 
and our tools are consequently somewhat different. 

The basic assumption underlying the analysis of 
this section is: 

Al There exist constants b and c, and a positive con- 
stant 7 such that 

var am(t) 

EX{t) = a+- + 0(e-^) 

and 

as t 

a varX(i) = — +      +o(e-7t) 
*2 

(3) 

(4) 

■ oo. 

It is shown in Glynn (1984) that such asymptotic 
expansions hold, for example, when X is a finite- 
state, irreducible, continuous-time Markov chain. We 
shall provide an alternative justification for this as- 
sumption later in this section. 

With (3) and (4) at our disposal, observe that 

Eam(t) EX{t/m) 
mb 

— var Xit/m) 
m 
a2      mc      „, ■yt/r. 

as t —► oo.   Consequently, the MSE of am(t) as an 
estimator of a can be expressed as 

E{am(t)-a)2    =    var am(t) + (Eam(t) - a)2 

=    ^ + ^(mb2 + c) + 0(e-^m). 

We can summarize the above discussion with the 
following proposition. 

Proposition 1  Under Al, 

E(am(t) - a)2 = y + ~(mb2 + c) + 0(e 

as t —> oo. 

-7t/m\ 

Note that so long as c is non-negative, it is clear 
that-setting m = 1 minimizes MSE. However, even if 
c is negative, it is never optimal, from the standpoint 
of asymptotic MSE, to choose m strictly greater than 
max(l, -c/b2). Since c and b are typically unknown, a 
conservative approach to choosing m sets m = 1; the 
idea is that if we choose m too large, the penalty for 
doing so can be arbitrarily bad, whereas the downside 
risk associated with choosing m = 1 is an inflation in 
the MSE that is of asymptotic order at most {Ab4 + 
4b2c + c2)/(4bH2). 

We turn now to justifying Al. Many different ap- 
proaches are available, but we shall focus on providing 
a coupling argument for Al; see Lindvall (1992) to get 
a sense of the scope and power of this method. In any 
case, we shall use coupling to prove Al for a discrete- 
time simulation output, in which X = (Xn : n > 0) 
takes the form Xn = f(Zn), where Z = (Zn : n > 0) 
is a Markov chain taking values in some state space 
S, and / : 5 -> R is a bounded function. Let 
Pm{x, ■) = P(Zm € -\Z0 = x) be the m-step tran- 
sition kernel of Z. We shall require that there exist a 
constant A > 0, m > 1, and a probability distribution 
ip on S such that 

Pm(x,-)>Xcp(- (5) 

=    a + + o( ,--yt/m 

for all x G S; condition (5) is closely related to the 
concept of Doeblin recurrence. (Note that any finite- 
state, aperiodic, irreducible Markov chain automati- 
cally satisfies (5).) It is well known that (5) implies 
that Z possesses a unique (steady-state) stationary 
distribution -n; see Meyn and Tweedie (1993) for de- 
tails. 



For a given function g : S —♦ 1R, let 

IMI = sup{|<7(a:)| : x € S). 

Also, let Z* be a stationary version of Z (ie. a Markov 
chain on S with the same transition law as Z, but ini- 
tiated with the stationary distribution IT). Coupling 
plays a key role in establishing the following inequal- 
ity. 

Proposition 2 Suppose (5) is satisfied. Then there 
exists p with \p\ < 1 such that 

Proof: Let ZQ and ZQ be chosen independently ac- 
cording to their respective initial distributions and set 
Q(x, •) = (Pm(x, •) - Ay>(-))/(l - A). With probabil- 
ity A, we can force Zm = Z^ by requiring that both 
chains distribute themselves according to <p; with 
probability 1 — A, we allow Zm and Z£, to distribute 
themselves independently according to Q(ZQ, ■) and 
Q(ZQ,-) respectively. The intermediate values (Z\, 
..., Zm_i) and (Z*,..., Z^-i) are then generated in- 
dependently according to their respective conditional 
distributions (conditional on the initial state, and the 
state at time m). If Zm — Z^, we then let the 
two chains run together henceforth, setting Zn = Z* 
for n > m. Otherwise, we repeat, conditional on 
(Zm,Z^), the construction above, so that with prob- 
ability A, Z<im and Z^m agree. Again, if we get agree- 
ment, we set Zn = Z^ for n > 2m. This process gets 
repeated at multiples of time m until we get an agree- 
ment in Z and Z*, after which we let the two chains 
run together. This construction establishes the ex- 
istence of a coupling time T such that Zn = Z„ for 
n>T, and P(T > n) < (1 - A)L"/™J. 

Clearly 

[EfiZiMZi+j) - Ef(ZS)g(Z;)\ 

=  WiZiMZi+A-EfWMZ^ 

=    mZiMZi+j) - f(Z*)g(Z:+j); T > i)\ 

< 2||/|||M|P(T>») 
< 2||/||||<7||(1-A)^J) 

proving the result. 

Turning now to (3), proposition 2 establishes that 

\Ef(Zi)-Ef(Z*0)\ = O(pi). 

Consequently, 

J^\Efe(Zi)\<<x> 

where fc{x) = f(x) - Ef{Z*0). Hence, 

1  °° 
=    EfiZ^ + ^EMZj) 

3=0 

1      °° -    ±^2Efc(Zk) 
fc=n 

=\    Ef{Z*0)+
h- + O{pn), 

where b = Y,°?=o EMZj)- To Prove (4) requires more 
work. For x € S, let Ex{-) denote the expectation 
operator conditional on Zo — x, and set 

oo 

h{x) = YJExUZk). 
k=l 

Proposition 2 guarantees that h is a bounded function 
(since we are assuming / is). Observe that 

i=0 
EC£fc(Zi))2   =   J2Ef'(Zi) (7) 

t=0 
n—1n—i 

+   2]r££/c(Zi)/c(2i+J) 
t=0 j=l 

=    ^EfUZi) 
t=0 
n-l 

+   2^Efe(Zi)[HZi)-h(Zn)]. 
i=0 

As in the derivation of (6), 

n-l 

Y/Efc(Zi) + 2j2Efo(Zi)h(Zi)       (8) 
t=0 i=0 

=    (n + l)Eft(Z*0) + 2nEfc(ZZ)h(Z*0) 

+     K + 0(P
n) 

where 

n   =   YsiEflW-EflW)} 
»=o 

oo 

+   27£{Efc(Zi)h(Zi) - Efc(Z*0)h(Z*0)}. 
i-0 

Furthermore, 

»=o 

Ln/2j 

£ Efe(Zi)h(Zn 

i=0 

(9) 



and 

|n/2j 

x=0 

L«/2J 

< £ E\fc{Zi)\      sup      \Exh(Zk) 
i=0 fc>n/2-l 

x€S 

< n||/||0(p"/2) 

=    0(p"/4) 

n-l 

J2   Efc{Zi)h{Zn) (10) 
»=rn/21 

n 

=      Y,   Efc{Z*0)h{ZU) + O{p^) 
t=rn/21 

=   Efc{Zl)k{Zl) + 0{pnl\ 

where 
oo 

fc(x) = ^Ex/i(ZJ). 

Combining (7) - (10) yields 

where <r2 = Ef*(Z$) + 2Efc(Z^)h(Z^), and d = K - 
2Efc{Z*0)h{Z*0) -2Efc{Zl)k{Z*0). We have therefore 
established the following result. 

Theorem 1 // (5) holds, and f is bounded, then A1 
is satisfied. 

The argument given above can be generalized sub- 
stantially. As a consequence, we believe that the 
asymptotic result contained in proposition 1 holds in 
great generality in the discrete-event simulation set- 
ting. 

3    THE   SENSITIVITY   OF   AN   INITIAL 
TRANSIENT DETECTION TEST 

In this section, we study a test proposed by Schru- 
ben (1982) for detecting the presence of an initial 
transient in a steady-state simulation. It takes ad- 
vantage of the fact that the CLT (2) can typically be 
strengthened to a functional CLT. Such a functional 
CLT demands that 

ni/2 (\   rnt \ 
— (-/     X(s)ds-at)  ^ B(t) (11) 

as n —> co ( =4- here denotes weak convergence of 
stochastic processes), where B — {B(t) : t > 0) 
is a standard Brownian motion. If the initial tran- 
sient is small, the idea is that the output series will 
then indeed be well approximated by the Brownian 
motion B as implied by (11), so that the test statis- 
tic constructed from X will have approximately the 
same distribution as that derived from B. On the 
other hand, if a significant initial transient is present, 
this will (hopefully) reflect itself in the test statis- 
tic taking on a value that is not representative of 
what is expected under B. Such unusual values of 
the test statistic then lead to a rejection of the hy- 
pothesis that the simulation has no initial transient. 
Schruben (1982) proposes a test statistic based on 
both the magnitude and location of the maximizer of 
a "standardized" version of the output series X. 

In this section, we will study the question of how 
large an initial transient must be present in order that 
test statistics derived from the output series will have 
corresponding distributions that are not well approx- 
imated by Brownian motion. This essentially comes 
down to the question of how large an initial transient 
must be present, in order that the functional CLT 
(11) break down. 

It is difficult to analyze this question in full gen- 
erality. Instead, our analysis focusses on a specific 
class of output processes that has qualitative struc- 
ture representative of a large class of discrete-event 
simulations. Specifically, we shall be concerned with 
a discrete-time output series (Xn : n > 0), in which 
the Ar

n's evolve according to an autoregressive rela- 
tion of the form 

-Xn+l — pXn + K+l (12) 

where V = (Vn : n > 0) is the associated innova- 
tions sequence and p > 0. Because we shall later be 
interested in studying the effect of the autoregressive 
parameter p, we shall embed (12) in a family of au- 
toregressions: 

Xn+i(m) = pmXn(m) + Vn+1. 

The simple dynamics of this system ensures that we 
can write Xn{m) in terms of the innovation sequence, 
namely 

n 

Xn(m) = pn
mX0(m) + Y,Pn

m~
kVk. 

Consequently, assuming \pm\ < 1, 

IVX,(m)   =   i^r 
n 

j=o 

l(l-pkntJ + 1) 

n      l-pm 

X0(m)   (13) 



[ntj        \nt\ -3 + &> E 
J=I fc=0 

In order to proceed further, we need to impose 
some structure on the Vn's. Specifically, we will as- 
sume that the V^'s are i.i.d. r.v.'s for which EVn = 7, 
var Vn = 77, and i^Vnl2"1-* < 00 for some e > 0. Then, 
we can assume existence of a standard Brownian mo- 
tion B = (Bit) : t > 0) such that 

£Vfc = rvy + r)B(n) + o(n1/2)     a.s. (14) 
fc=i 

asn-t 00;  (14) is known, in the literature, as a 
"strong approximation" for the Vn's. (See Csörgö and 
Revesz (1981) and Philipp and Stout (1975) for ad- 
ditional details.) 

Substituting (14) into (13) and simplifying, we get 

1/2   /1 L"'J \ i-J-g^W-aWJ        (15) 

"    T + ^(1-ÄWm)- 

asn-too, where a(m) = 7(1 — />m)_1 and a(m) = 
77(1 — Pm)-1- Noting that B{n-)/y/n has the same 
distribution as does B(-), we see that the functional 
CLT (11) is valid so long as the other terms on the 
right-hand side of (15) converge to zero asn-»oo. 
Given that the test of Schruben (1982) uses only val- 
ues of t e [0,1], we note then that 

1 
(l-fC)X0(m)^0 

771/m 

uniformly in t € [0,1], provided Xo(m) = o(y/m). As 
for the other major term on the right-hand side of 
(15), we note that 

|mtj 

|mtj 

3=1 

[mtj 00 

= (i-^m)E^E^ 
|mtj fc 

=      (l-pm)X>m£^ 

[mtj 

+ pjrJ£^(i-/»m) 

[mtj 

=    (l-pm)J2pkm(kl + riB(k) + o(V^)) 
fc=i 

+    o(l)     a.s. 

=       (l-/3m)_17 + o((l-/0m)_1)        a.S. , 

where = denotes equality in distribution.   Conse- 
quently, in order that 

[mtj 

3-1 

converge in probability to zero uniformly in t € [0,1], 
it must be that m_1/2(l - pm)~l —> 0 as m —> 00. 
Hence, our analysis of the autoregressive model (12) 
leads to the following conclusion. 

If the time horizon m is large, we should not 
expect any test based on (11) to detect the 
presence of an initial transient unless either: 

1. the initial condition Xo of the autore- 
gression (12) is of order yjm or larger, 
or 

2. the auto-correlation parameter is such 
that p is of the order 1 — c/y/m or 
larger. 

Thus, this suggests that this class of tests can be 
effective for dealing with initial transients if either the 
autocorrelations in the simulation decay slowly, or if 
the initial condition for the simulation is significantly 
non- stationary; otherwise, the tests should not be 
expected to detect transient effects. 
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